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Abstract
The quantum-mechanical transmission through a disordered tunnel barrier is
investigated analytically in the following regime: (correlation range of the
random potential) � (penetration length) � (barrier length). The mean and/or
the width of the potential can either be constant, or vary slowly across the
barrier. The typical transmission is found to be a non-monotonic function of
the disorder strength, increasing at weak disorder, reaching a maximum in the
crossover from weak to strong disorder, and decreasing at strong disorder. This
work provides a quantitative analysis of the phenomenon of disorder-induced
enhanced tunnelling, put forward by Freilikher et al (1995 Phys. Rev. E 51
6301, 1996 Phys. Rev. B 53 7413).

PACS numbers: 03.65.Xp, 73.23.−b, 03.65.Nk, 73.20.Fz, 03.65.Sq.

1. Introduction

Anderson localization is one of the most spectacular disorder-induced phenomena [1]. The
one-dimensional situation is especially well understood [2]. Consider for definiteness the
Schrödinger equation for an electron moving on a line, in a disordered potential V (x). Even in
the presence of an infinitesimal amount of disorder, all eigenstates are exponentially localized,
with a localization length ξ = 1/γ , where γ is the Lyapunov exponent. As a consequence,
the typical conductance of a disordered sample falls off exponentially with its length L.
More precisely, the zero-temperature conductance g of a one-channel sample is related to the
transmission T across the sample by the two-probe Landauer formula [3]:

g = 2e2

h
T . (1.1)

The theory of one-dimensional localization predicts that the transmission T is a widely
fluctuating quantity in the insulating regime (γL � 1), so that the meaningful quantity
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to consider is its typical (i.e., most probable) value exp(〈ln T 〉). The mean 〈ln T 〉 grows
linearly with the sample length,

〈ln T 〉 ≈ −2γL (1.2)

and the ratio (ln T )/L is self-averaging, in the strong sense that all the cumulants of (ln T )

grow linearly with L [2]. In other terms, the statistics of T (resp. of ln T ) is similar to that
of the partition function (resp. of the total free energy) of a disordered thermodynamical
system. This deep analogy appears clearly in the framework of the transfer-matrix formalism,
especially for discrete (tight-binding) models [4, 5].

So far, it was implicitly assumed that the energy E of the incoming electron is above the
mean of the disordered potential (usually taken to be zero). Much less is known on the converse
situation of tunnelling through a disordered barrier, where the mean potential 〈V (x)〉 inside
the sample is non-zero, and higher than the energy E. More generally, a tunnelling situation
is met if the disordered sample is periodic on average, and if the energy is in a gap of the
underlying average structure [6].

It has been put forward, seemingly in [6] for the first time, that a weak disorder enhances
the transmission in such a tunnelling situation. In their subsequent work [7], the authors
show that a weak disorder increases both the mean conductance (proportional to 〈T 〉) and
the mean resistance (proportional to 〈1/T 〉) of a tunnel barrier. This disorder-induced
enhanced tunnelling effect is paradoxical, because random impurity potentials usually lead to
additional scattering, which hinders transport. In any case, a strong enough disordered
potential is expected to have the usual effect of reducing the transmission. Putting together
these observations, it can therefore be anticipated that the transmission reaches a maximum
in an intermediate crossover regime, corresponding to a moderate amount of disorder. This
non-monotonic behaviour of the transmission as a function of the disorder strength seems to
have been overlooked so far (see, however, [8] for attempts earlier than [6, 7], and [9] for a
recent discussion of the effects of a weak disorder on gap states).

Our aim is to provide a quantitative analysis of the non-monotonic behaviour of the
disorder-induced enhanced tunnelling transmission. We restrict this study to the regime of
most physical interest:

a (correlation range of potential) � 1/K (penetration length) � L (barrier length). (1.3)

The first inequality implies that the fluctuations of the disordered potential are short range, so
that the latter can be modelled as a Gaussian white noise. The second inequality implies that
the transmission of the barrier is exponentially small, even in the absence of disorder. This
suggests that 〈ln T 〉 will be the right quantity to consider.

For completeness, we first give in section 2 an overview of tunnelling through a clean
barrier. Section 3 then deals with tunnelling through a square disordered barrier (the mean
and the width of the potential are constant), while section 4 is devoted to the general case (the
mean and/or the width of the potential vary smoothly across the barrier). A summary and an
outlook are presented in section 5.

2. Tunnelling through a clean barrier

We begin with a reminder of the well-known problem in quantum mechanics [10] of tunnelling
through a clean barrier. In reduced units (h̄ = 2m = 1), the one-dimensional Schrödinger
equation reads

−ψ ′′(x) + V (x)ψ(x) = Eψ(x). (2.1)
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2.1. Square clean barrier

Consider first the simple case of a square barrier of length L. The potential is constant in the
barrier:

V (x) = V0 (0 � x � L) (2.2)

and vanishes elsewhere.
In the situation of interest, the energy E of the incoming particle is in the range

0 < E < V0. The wavevector p of the particle and its inverse penetration length K in
the barrier read

p =
√

E K =
√

V0 − E. (2.3)

The reflection and transmission amplitudes r and t are determined by looking for a solution to
(2.1) of the form

ψ(x) =



eipx + r e−ipx (x � 0)

a eKx + b e−Kx (0 � x � L)

t eip(x−L) (x � L).

(2.4)

Expressing the continuity of ψ(x) and of its derivative at x = 0 and x = L provides four
linear equations, whose solution yields

r = (p2 + K2) sinh KL

(p2 − K2) sinh KL + 2ipK cosh KL
(2.5)

t = 2ipK

(p2 − K2) sinh KL + 2ipK cosh KL
. (2.6)

Throughout the following, we will be mostly interested in the transmission intensity
coefficient (or transmission for short),

T = |t |2 (2.7)

which enters the Landauer formula (1.1). In the present case, (2.6) yields

T = 4p2K2

4p2K2 + (p2 + K2)2 sinh2 KL
. (2.8)

In the regime (1.3), where the barrier length is much larger than the penetration length, the
transmission falls off exponentially, as

T ≈ 16p2K2

(p2 + K2)2
exp(−2KL). (2.9)

All subsequent results for the transmission will be given with exponential accuracy, in analogy
with (1.2). Neglecting the prefactor, we thus rewrite (2.9) as

ln T ≈ −2KL. (2.10)

2.2. Arbitrary clean barrier

Let us now consider tunnelling through an arbitrary clean barrier. The potential V (x) is larger
than the energy E for 0 � x � L, so that the inverse penetration length reads

K(x) =
√

V (x) − E. (2.11)

We assume that the potential has a smooth profile across the barrier, i.e., the length scale over
which V (x) or K(x) varies is of the order of the barrier length L itself.
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The transmission can be determined along the lines of the previous case, by seeking
a solution to (2.1) of the form (2.4), where exp(±Kx) are replaced by the two elementary
solutions u(x) and v(x), with initial values u(0) = v′(0) = 1, u′(0) = v(0) = 0, whose
Wronskian reads u(x)v′(x) − u′(x)v(x) = 1. We thus obtain

t = 2ip

p2v(L) + ip(u(L) + v′(L)) − u′(L)
. (2.12)

The hypothesis of a smoothly varying potential implies that it is legitimate to use the
well-known WKB approximation [10, 11]. Indeed, the condition for this scheme to be valid,

1

K(x)2

dK(x)

dx
∼ 1

K(x)L
� 1 (2.13)

is automatically satisfied in the regime (1.3) of long barriers. Within this framework, a basis
of solutions to (2.1) in the barrier reads

ψ±(x) ∼ exp

(
±

∫ x

0
K(y) dy

)
(0 < x < L). (2.14)

At least one of the elementary solutions u(x) and v(x) (and generically both of them) is
proportional to the growing solution ψ+(x). Hence (2.12) leads to the estimate

T ∼ 1

|ψ+(L)|2 (2.15)

which will be sufficient hereafter, in order to work with exponential accuracy.
The transmission therefore again falls off exponentially:

ln T ≈ −2
∫ L

0
K(x) dx (2.16)

where the integral is the action of the classical imaginary-time trajectory, or instanton, crossing
the barrier at energy E [10–12]. The estimate (2.16) generalizes (2.10) to a potential barrier
with an arbitrary (smooth) profile.

3. Tunnelling through a square disordered barrier

We now turn to the case of a square disordered barrier of length L. The barrier potential,

V (x) = V0 + W(x) (0 � x � L) (3.1)

is the sum of a constant V0 and of a disordered component W(x) with zero mean.
As stated in the introduction, in regime (1.3) it is legitimate to model W(x) as a Gaussian

white noise, such that

〈W(x)W(y)〉 = 2Dδ(x − y). (3.2)

Estimate (2.15) still holds in the presence of disorder. We are therefore led to consider the
situation where the random potential extends over the half-line x > 0, and to investigate the
growth rate of the generic solution to (2.1).

The most salient effect of the disordered potential is that the wavefunction in the barrier
now changes sign many times in the regime under consideration, so that neither the concept
of a single instanton trajectory, nor the WKB estimate (2.14), makes sense anymore. The
most efficient approach to this problem is the invariant-measure method, initiated long ago
by Dyson [13] and Schmidt [14]. For technical reasons, the energy E − i0 and the inverse
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penetration length K + i0 are respectively endowed with infinitesimal negative and positive
imaginary parts. The method consists in introducing the Riccati variable

z(x) = ψ ′(x)

ψ(x)
(3.3)

so that

ψ(x) = ψ(0) exp
∫ x

0
z(y) dy. (3.4)

The Schrödinger equation (2.1) is equivalent to the Riccati equation

z′ = K2 − z2 + W(x). (3.5)

The key property of this equation is the following: the complex random variable z(x) has a
well-defined limit probability distribution, irrespective of the position x, provided it is deep
enough in the sample (Kx � 1), and of the initial condition z(0). Let us denote averages with
respect to this invariant measure as 〈〈· · ·〉〉. Equation (3.4) implies that the growing solution to
(2.1) typically grows exponentially, as

ln ψ+(x) ≈ �x (3.6)

where

� = 〈〈z〉〉 (3.7)

is the complex characteristic exponent. When the energy variable is just below the real axis,
� splits according to [15, 5]

�(E − i0) = γ (E) + iπH(E). (3.8)

The real part of (3.8) is the Lyapunov exponent γ . Inserting the behaviour (3.6) into
estimate (2.15), we therefore obtain at once the prediction

〈ln T 〉 ≈ −2γL (3.9)

recalled in the introduction [see (1.2)]. The imaginary part of (3.8) is proportional to the
integrated density of states of the problem per unit length,

H(E) =
∫ E

−∞
ρ(E′) dE′ (3.10)

so that 1/H(E) is the mean distance between any two consecutive zeroes of ψ+(x).
The present case of a white-noise potential has been investigated by several authors [16–

18]. Their findings can be recast into the following formula for the characteristic exponent:

� = D1/3F(X) (3.11)

with

X = K2

D2/3
= V0 − E

D2/3
(3.12)

and

F(X) = e−2iπ/3 Ai′(e−2iπ/3X)

Ai(e−2iπ/3X)
= Ai′(X) + i Bi′(X)

Ai(X) + i Bi(X)
(3.13)

where Ai(z) and Bi(z) are Airy functions [19]. As a consequence of (3.8), we have

γ = D1/3F R(X) F R(X) = Ai(X)Ai′(X) + Bi(X)Bi′(X)

Ai(X)2 + Bi(X)2
(3.14)
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H = D1/3

π
F I(X) F I(X) = 1

π(Ai(X)2 + Bi(X)2)
. (3.15)

References [15–18] deal separately with the real and imaginary parts of �, and therefore
rather derive (3.14) and/or (3.15). For completeness, we give in the appendix a self-contained
derivation of (3.11)–(3.13).

Inserting (3.14) into (3.9) leads us to the prediction

〈ln T 〉 ≈ −2D1/3F R(X)L (3.16)

where the scaling variable X is real and positive in a tunnelling situation.
In order to emphasize the dependence of the transmission on the disorder strength, we

recast the above prediction as

〈ln T 〉 ≈ (ln T )0G(Y) (3.17)

where (ln T )0 = −2KL is the result (2.10) in the absence of disorder, while

Y = D

K3
= D

(V0 − E)3/2
= X−3/2 (3.18)

is the reduced disorder strength, and the scaling function G reads

G(Y) = Y 1/3F R(Y−2/3). (3.19)

3.1. Weak-disorder regime

The weak-disorder regime corresponds to D � K3, i.e., X � 1 or Y � 1. The differential
equation

F 2 + F ′ = X (3.20)

obeyed by the function F(X) easily yields the asymptotic expansion

F(X) = X1/2 − 1

4X
− 5

32X5/2
+ · · · . (3.21)

This result is formally real, so that F R has the same asymptotic expansion (while F I is
exponentially small as X → +∞). We thus obtain

G(Y) = 1 − Y

4
− 5Y 2

32
+ · · · (3.22)

i.e., more explicitly

〈ln T 〉 ≈ 2L

(
−K +

D

4K2
+

5D2

32K5
+ · · ·

)
. (3.23)

The first correction of order D is in agreement with the perturbative result of [7]: the leading
effect of a weak disorder is found to enhance transmission.

3.2. Strong-disorder regime

Consider now the opposite regime of strong disorder (D � K3, i.e., Y � 1 or X � 1). In
this regime, the scaling function

G(Y) ≈ F R(0)Y 1/3 (3.24)

grows as the power 1/3 of the strength of disorder, with the explicit prefactor

F R(0) = 31/3

2

�(2/3)

�(1/3)
= 0.364 506. (3.25)
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(a) (b)

Figure 1. Plots of the scaling functions describing the effect of disorder on tunnelling transmission,
against the reduced disorder strength Y. Full lines: G entering (3.17) (square barrier). Dashed lines:
G1 entering (4.9) (parabolic barrier with parabolic disorder). Dash-dotted lines: G2 entering
(4.14) (parabolic barrier with uniform disorder). (a) Circles show the values of Y where the scaling
functions cross unity: Y 		 = 14.168, Y 		

1 = 11.469, Y 		
2 = 6.522. (b) (enlargement) Circles show

the values of Y where the scaling functions have their minima: G = 0.7284 for Y 	 = 1.695,
G1 = 0.7331 for Y 	

1 = 1.408, G2 = 0.7704 for Y 	
2 = 0.982.

As a consequence, we have

〈ln T 〉 ≈ −2F R(0)D1/3L. (3.26)

The transmission decreases with the disorder strength in the strong-disorder regime, as
anticipated in the introduction. Result (3.26) is independent of K: the damping due to the
mean barrier V0 becomes negligible with respect to localization effects.

3.3. Non-monotonic crossover behaviour

The function G(Y) which enters the scaling law (3.17) decreases first from its value Y (0) = 1,
according to (3.22), in the weak-disorder regime, and then increases according to (3.24), in
the strong-disorder regime. It must therefore reach a minimum, somewhere in the crossover
from weak to strong disorder.

Figure 1 shows plots (full lines) of the scaling function G(Y), given by (3.14), (3.19).
This function passes through a minimum, G(Y 	) = 0.7284 for Y 	 = 1.695, before it crosses
the value G(Y 		) = 1 for Y 		 = 14.168. The non-monotonic behaviour of the transmission as
a function of the disorder strength in the crossover regime, anticipated in the introduction, is
therefore confirmed at a quantitative level. The tunnelling transmission is enhanced for a weak
enough reduced disorder strength (Y < Y 		), the enhancement being maximal for Y = Y 	.

4. Tunnelling through an arbitrary disordered barrier

We finally turn to the general situation where both the deterministic part V0(x) and the strength
of the disordered part W(x) of the potential may have a smooth dependence on the position
across the barrier. We set

V (x) = V0(x) + W(x) (0 < x < L) (4.1)

with

K(x) =
√

V0(x) − E (4.2)
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and

〈W(x)W(y)〉 = 2D(x)δ(x − y). (4.3)

We assume that K(x) and D(x) vary smoothly across the barrier, and we again focus our
attention onto the regime (1.3). In this situation, the Riccati variable z(x) is approximately
distributed according to the local invariant measure, characterized by the parameters K(x)

and D(x). The reason why this adiabatic approach is legitimate is the same as for the WKB
scheme in the absence of disorder: the length over which parameters vary, i.e., the barrier
length L itself, is much larger than the characteristic length of the relaxation of the distribution
of the Riccati variable, i.e., the localization length 1/γ (x).

Equations (2.15), (3.4) yield the following expression:

〈ln T 〉 ≈ −2
∫ L

0
γ (x) dx (4.4)

for the mean logarithm of the transmission. Prediction (4.4) includes all the previous results
(2.10), (2.16), (3.9) as special cases. By means of (3.14), it can be recast into the more explicit
form

〈ln T 〉 ≈ −2
∫ L

0
D(x)1/3F R

(
K(x)2

D(x)2/3

)
dx. (4.5)

In the weak-disorder regime, this prediction behaves as

〈ln T 〉 ≈ 2
∫ L

0

(
−K(x) +

D(x)

4K(x)2
+ · · ·

)
dx (4.6)

while in the strong-disorder regime we have

〈ln T 〉 ≈ −2F R(0)

∫ L

0
D(x)1/3 dx. (4.7)

These two expressions respectively generalize (3.23) and (3.26).
To close up, let us illustrate more explicitly the result (4.5) on two examples.

Example 1: Parabolic barrier with parabolic disorder

In our first example, both the deterministic potential and the disorder strength have a parabolic
shape:

K(x)2 = V0(x) − E = K2
0

4x(L − x)

L2
D(x) = D0

4x(L − x)

L2
(4.8)

with maximum values K2
0 and D0 at the centre of the barrier (x = L/2).

In this situation, (4.5) yields the scaling law

〈ln T 〉 ≈ (ln T )0G1(Y ) (4.9)

similar to (3.17), with

(ln T )0 = −π

2
K0L (4.10)

Y = D0

K3
0

(4.11)

and

G1(Y ) = 2

π
Y 1/3

∫ π

0
F R(Y−2/3(sin θ)2/3)(sin θ)5/3 dθ. (4.12)
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The latter expression is obtained by setting x = L(1+cos θ)/2, so that 4x(L−x)/L2 = sin2 θ ,
with 0 � θ � π .

The scaling function G1(Y ) has been evaluated numerically by means of the integral
(4.12), and plotted in figure 1 (dashed lines). Its qualitative dependence on the disorder
strength Y is similar to that of G(Y), with the following behaviour at weak and strong disorder:

G1(Y ) ≈ 1 − Y

π
(Y � 1)

G1(Y ) ≈ 121/3�(1/3)

5π
Y 1/3 ≈ 0.390 454Y 1/3 (Y � 1)

(4.13)

with a minimum G1(Y
	
1 ) = 0.7331 for Y 	

1 = 1.408 and with G1(Y
		
1 ) = 1 for Y 		

1 = 11.469.

Example 2: Parabolic barrier with uniform disorder

In our second example, the deterministic potential still has the parabolic form (4.8), while the
disorder strength D(x) = D is constant.

Prediction (4.5) now yields the scaling form

〈ln T 〉 ≈ (ln T )0G2(Y ) (4.14)

again with (4.10), and with

Y = D

K3
0

(4.15)

and

G2(Y ) = 2

π
Y 1/3

∫ π

0
F R(Y−2/3 sin2 θ) sin θ dθ. (4.16)

The scaling function G2(Y ) is also plotted in figure 1 (dash-dotted lines). Its qualitative
dependence on the disorder strength Y is again similar to that of G(Y), with the following
behaviour at weak and strong disorder:

G2(Y ) ≈ 1 − Y

3π
ln

1

Y
(Y � 1)

G2(Y ) ≈ 2 31/3

π

�(2/3)

�(1/3)
Y 1/3 ≈ 0.464 103Y 1/3 (Y � 1)

(4.17)

with a minimum G2(Y
	
2 ) = 0.7704 for Y 	

2 = 0.982 and with G2(Y
		
2 ) = 1 for Y 		

2 = 6.522.

5. Discussion

In this paper, we have investigated by analytical means the transmission through a disordered
tunnel barrier, in the regime (1.3) of most physical interest. We have thus provided a
quantitative analysis of the phenomenon of disorder-induced enhanced tunnelling, put forward
by Freilikher et al [6, 7]. The most salient outcome of the present work is that the enhancement
effect is a non-monotonic function of the strength of disorder, and that it is maximally efficient
at some well-defined intermediate value Y 	 of the reduced disorder strength Y.

The key point of our approach consists in utilizing the scaling law (3.11)–(3.13) for the
complex characteristic exponent �. It is worth noting that this formalism encompasses, and
treats on the same footing, both the usual situation of Anderson localization, where the energy
is above the mean of the disordered potential (corresponding to negative values of the scaling
variable X), and the tunnelling situation, where the energy is below the mean of the disordered
potential (corresponding to positive values of X). As a consequence, the general results on the
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statistics of the transmission, recalled in the introduction, still hold in the tunnelling situation.
In particular, 〈ln T 〉 is the right quantity to consider.

In the case of a white-noise potential, considered throughout this work, form (3.12) of
the scaling variable X is merely dictated by dimensional analysis, while the explicit formula
(3.13) for the scaling function F(X) is given a self-contained derivation in the appendix.
Somewhat equivalent results had been obtained in several earlier works [16–18]. The scaling
law (3.11)–(3.13) also describes the spectra of other one-dimensional disordered systems,
such as the diffusion of classical particles in a random force field [20]. An analogous scaling
formula holds for discrete models near their band edges. Consider the tight-binding equation

ψn−1 + ψn+1 + Vnψn = Eψn. (5.1)

For a clean chain (Vn = 0), the dispersion relation reads E = 2 cos p. In the regime of a weak
disorder

(〈
V 2

n

〉 = � � 1
)
, and near the upper band edge (p � 1), one has [21]

� = �1/3f (x) x = − p2

�2/3
≈ E − 2

�2/3
. (5.2)

This scaling law turns out to play a central role in various problems, such as the spreading
dynamics of a wave packet [22]. The results (3.11)–(3.13) can be viewed as the formal
continuum limit of (5.2). The identification between our continuum problem and the tight-
binding model (5.1) has to take place near the band edge. Indeed, introducing explicitly
the lattice spacing a, which plays the role of the correlation range of the potential, the first
inequality of (1.3) implies |pa| = Ka � 1, as p = iK , whereas D = �/(2a3). The scaling
variables and functions match between (5.2) and (3.11)–(3.13) (up to powers of 2 due to
different conventions): x = 22/3X, f = 21/3F .

For a square disordered barrier, the main result (3.17) for 〈ln T 〉, i.e., the logarithm of the
typical transmission, can be generalized to all the moments of T in the regime (1.3). It can
indeed be shown, along the lines of [2], that these moments scale as

〈T n〉 ≈ exp(−2nGn(Y )KL) (5.3)

where Y is the reduced disorder strength of (3.18), while the scaling function Gn(Y ) depends
on the order n (not necessarily an integer). Equation (3.17) is recovered as G0(Y ) = G(Y).
Skipping every detail, let us mention the weak-disorder expansion

Gn(Y ) = 1 − 2n + 1

4
Y + · · · (Y � 1) (5.4)

hence

〈T n〉 ≈ exp

[
2L

(
−nK +

n(2n + 1)D

4K2
+ · · ·

)]
. (5.5)

In agreement with [7], both 〈T 〉 and 〈1/T 〉, and indeed all the moments whose order is not
in the range −1/2 < n < 0, are increased by a weak amount of disorder. In the opposite
strong-disorder regime, we have

Gn(Y ) ≈ anY
1/3 (Y � 1) (5.6)

with some n-dependent amplitude an, hence

〈T n〉 ≈ exp(−2nanD
1/3L). (5.7)

The evaluation of the full scaling function Gn(Y ) is a difficult task in general, except for n a
negative integer, corresponding by means of (2.15) to positive integer powers of |ψ+(L)|2. In
this case, Gn(Y ) can be derived by means of the algebraic approach of [2]: it is (the real part
of ) an algebraic function with degree 2|n| + 1.
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For a disordered barrier with an arbitrary profile, the general prediction (4.5) has been
illustrated on two realistic examples of parabolic barriers. These examples demonstrate that
the qualitative features of disorder-induced enhanced tunnelling, and chiefly its non-monotonic
behaviour as a function of the disorder strength, are rather insensitive to the shape of the mean
and/or the width of the random potential. Even quantitative characteristics, such as Y 	 or Y 		,
do not depend too much on the profile of the barrier.

Besides the present situation of thick tunnel barriers, the non-monotonic enhancement of
transmission may be a more general phenomenon. Somewhat similar features have indeed
been observed recently [23] in a problem inspired by nuclear fission.

It is also worth noting that, in the somewhat dual case of the total reflection of an electron
by a semi-infinite disordered sample, universal features of the distribution of the Wigner time
delay have received much attention recently [24]. The effects of disorder-induced enhanced
tunnelling on the Wigner time delay are also potentially of interest in transmission [25], even
though this concept has been criticized as being somewhat ambiguous [26].

Finally, the disorder-induced enhancement of transmission is a quantum-mechanical
phenomenon, and more generally a wave phenomenon. It is indeed due to the existence
of non-trivial localized states in a weakly-disordered barrier, which themselves originate
in the interferences between the multiply scattered waves. Therefore, no disorder-induced
enhancement is to be expected, for example, in the Kramers problem [27] of the thermally
activated hopping of a classical particle over a potential barrier.
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Appendix. Derivation of expressions (3.11)–(3.13)

This appendix presents a self-contained derivation of expressions (3.11)–(3.13) for the complex
characteristic exponent �, introduced in (3.6).

To do so, we determine the invariant measure of the complex Riccati variable z, introduced
in (3.3). As this distribution has a complex support, instead of writing a Fokker–Planck
equation for its density, it is advantageous to consider the linear transforms

�(y) = 〈〈ln(y − z)〉〉 φ(y) = �′(y) =
〈〈

1

y − z

〉〉
. (A.1)

For definiteness, we assume that K has positive real and imaginary parts. Equation (3.5)
shows that z(x) keeps a positive imaginary part, so that �(y) is analytic in the lower half
plane.

In the spirit of the derivation of the Fokker–Planck equation [28], we consider a small
increment ε of x, and set z(x + ε) = z(x) + η. Both

〈η〉 ≈ (K2 − z2)ε 〈η2〉 ≈ 2Dε (A.2)

are proportional to the increment ε, while higher cumulants are negligible.
Along the lines of the Dyson–Schmidt approach [13, 14], we then look for a stationarity

condition by comparing the expressions of �(y) corresponding to the points x and x + ε:
〈〈ln(y − z)〉〉 = 〈〈ln(y − z − η)〉〉. By expanding the right-hand side of this equality in powers
of η, and using (A.2), we obtain the condition〈〈

K2 − z2

y − z
+

D

(y − z)2

〉〉
= 0 (A.3)
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i.e.,

Dφ′(y) + (y2 − K2)φ(y) = y + �. (A.4)

The strength of disorder D can be scaled out by setting K2 = D2/3X,� = D1/3F , proving
thus the scaling formulae (3.11), (3.12) and y = D1/3u, φ = D−1/3ψ .

We are thus left with a differential equation for ψ(u),

ψ ′(u) + (u2 − X)ψ(u) = u + F (A.5)

which can be solved by varying the constant:

ψ(u) = exp(−u3/3 + Xu)C(u) C(u) =
∫

(v + F) exp(v3/3 − Xv) dv. (A.6)

The existence of a regular solution, such that ψ(u) → 0 as |u| → ∞, determines F(X).
We must have C(u) → 0 as |u| → ∞ in all the directions of the lower half plane where
exp(−u3/3) diverges. This happens in two Stokes sectors, represented by the directions
u → −∞ and u → e−iπ/3∞. We thus obtain

F = I ′(X)

I (X)
(A.7)

with

I (X) =
∫ e−iπ/3∞

−∞
exp(v3/3 − Xv) dv. (A.8)

Finally, I (X) is equal to the Airy function Ai(e−2iπ/3X) [19], up to a multiplicative constant.
This observation leads to (3.13).
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